
  

 

Abstract  Lower limb assistive devices have shown potential 
to restore mobility to millions of individuals with walking 
impairments; however, their success depends on whether they 
can be controlled safely, reliably, and intuitively with user-
friendly sensors
devices implement finite-state controllers which rely on accurate 
estimation of the current gait phase (e.g. stance, swing) of one or 
both legs. Bilateral gait segmentation is especially important for 
restoring natural interlimb coordination, which contributes to 
device safety and efficiency. Most existing techniques for gait 
segmentation use ground contact, device-embedded, or body-
worn sensors with threshold or machine learning -based 
algorithms. They have been effective at identifying the state of 
the ipsilateral (i.e. sensor-side) leg but can become inconvenient 
for bilateral gait segmentation because they often require many 
sensors and are more sensitive to sensor placement. Therefore, 
we present a proof of concept for a novel approach to bilateral 
gait segmentation using a thigh-mounted inertial measurement 
unit (IMU) and depth sensor with the contralateral leg in its field 
of view. We extracted two features, ground and shank angle, 
from the depth data and developed a sensor fusion strategy to 
predict contralateral heel contact and ipsilateral toe off with 
accuracy approaching that of a setup with bilateral thigh and 
shank IMUs. By using computer vision to estimate the state of 
both legs, we introduce a new technique for bilateral gait 
segmentation which could make assistive devices more user-
friendly, safe, and functional. 

I. INTRODUCTION 

Recently, the field of wearable lower-limb assistive 
devices has expanded and there are now research and 
commercially available devices which can help restore 
locomotion. For example, powered prostheses have enabled 
amputees to seamlessly and intuitively transition between 
different locomotor activities including level ground, stairs, 
and ramps [1] [3], while powered exoskeletons and orthoses 
have enabled individuals with paresis or paralysis to regain 
some functional independence by assisting transitions between 
sitting, standing, and level ground walking [4], [5]. Powered 
devices can actively change mechanical properties between 
different locomotor activities and can inject energy into the 
system (e.g. powered plantarflexion), which has potential to 
improve walking kinematics and overall mobility [6], [7]. 
However, users must demonstrate that they can control these 
powered devices safely, reliably, and intuitively with user-
friendly sensors before these technologies will gain wider 
acceptance outside of the lab environment. 

Gait phase-based methods, such as finite-state controllers, 
are most popular among numerous approaches for controlling 
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wearable lower-limb assistive devices for different activities 
[8]. Finite-state controllers decompose gait into a series of 
distinct phases and parameterize the control laws based on the 
current state (e.g. stance, swing) and activity (e.g. standing, 
level walking). The first step to appropriately selecting and 
executing a control law within a finite-state paradigm, though, 
is state estimation (i.e. identifying the current gait phase).  

Although most unilateral devices only estimate the state of 
the assisted side, bilateral state estimation is important for 
restoring safe and natural interlimb coordination. For instance, 
robust identification of the double support phase could help 
ensure a device does not become compliant before weight 
transfer, which could lead to buckling or a fall. Accurate 
detection of double support phase could also facilitate better 
synchronization of power delivery, making assistance such as 
powered plantarflexion more effective. Thus, incorporating 
bilateral state information into device function may also enable 
users to control their devices more intuitively and benefit more 
from the assistance they are capable of providing. 

Many techniques have been developed for state estimation 
using body-worn and/or device-embedded sensors and a 
variety of detection algorithms [9]. For example, axial load 
and joint kinematics are used to transition between stance and 
swing states for a powered knee-ankle prosthesis [1]; however, 
load cells can be expensive and are not widespread outside of 
prosthetics. Foot switches and pressure sensitive insoles are 
also commonly used to derive a ground contact signal; 
however, they are sensitive to placement based on foot size 
and pressure distribution, limited by durability, and require a 
foot plate or shoe insert. Alternatively, electromyographic 
(EMG) signals have been used to detect up to 8 sub-phases of 
gait, but muscle signals are variable and instrumentation can 
be uncomfortable and inconvenient [9]. Finally, linear 
accelerometers, gyroscopes, and IMUs have been used for gait 
segmentation, sometimes in combination with ground contact 
sensors. Inertial sensors are small, cheap, and durable and can 
reliably estimate the state of the instrumented leg using 
algorithms based on peak detection and threshold crossings. 

Though these existing techniques can accurately estimate 
the state of the instrumented leg, identifying the state of the 
uninstrumented leg poses some challenges. Thus, most 
unilateral assistive devices lack awareness of the state of the 
unassisted leg, which limits their ability to coordinate behavior 
between both legs. However, existing techniques for indirect 
sensing may be able to provide accurate and robust estimates 
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of the state of the uninstrumented leg while preserving user-
friendly, unilateral sensorization.  

Depth sensing is one such indirect sensing technique that 
may be useful for gait segmentation. Previously, a few studies 
have demonstrated the potential of using vision or depth 
sensing to detect changes in terrain to improve intent 
recognition [11] [13]; however, to the best of our knowledge 
the use of a leg-mounted depth sensor for gait segmentation is 
unprecedented. With appropriate positioning and computer 
vision techniques, depth sensors could simultaneously provide 
high-confidence information about the environment, the 
contralateral leg, and the interaction between them. 

In this paper, we present proof-of-concept for a novel 
approach using a single thigh-mounted depth sensor and IMU 
worn unilaterally to provide accurate and robust detection of 
bilateral gait events. We demonstrate that using depth sensor 
data to extract additional contextual information about the 
contralateral leg and the environment slightly improves 
bilateral gait segmentation. Our initial findings suggest that 
vision is a robust, non-redundant, and modular sensor modality 
that could improve the control of lower limb assistive devices. 

II. METHODS 

A. Instrumentation and protocol

This study was carried out on one subject (male, 27 years 
old, 183 cm, 73 kg) after obtaining written informed consent 
as approved by the Northwestern University Institutional 
Review Board. The subject was instrumented with 6-DOF 
IMUs (tri-axial accelerometer and gyroscope) placed 
bilaterally on the thigh and shank and sampled at 500 Hz 
(MPU-9250; Invensense, San Jose, CA, USA). The sensors 
were attached to the subject with elastic straps and cohesive 
bandage. A 3D time-of-flight camera (Pico Flexx; Pmd Tech, 
Siegen, Germany [14]) was secured to the right thigh adjacent 
to the IMU with Velcro (Figure 1). The camera was positioned 
such that the left (contralateral) leg was visible during walking. 
The frame rate and resolution of the camera were set to 15 fps 
and 171x224 pixels, respectively. 

Although ground contact sensors and embedded force 
platforms are commonly used to collect ground truth 
measurements of gait events, we chose an IMU-based 
segmentation approach instead so the subject could walk more 
freely and vary his path. Also, IMU-based segmentation 
approaches have been validated against more traditional 
techniques and are less sensitive to sensor placement [16].  

The subject completed a total of 14 trials by performing 
two repetitions of each condition for three types of walking 
activities: (1) straight line walking at slow, normal, or fast 
speed for 10 meters, (2) straight or zig-zag walking at normal 
speed for 10 meters with obstacles in the path, and (3) straight 
line walking followed by a 90° right or left hand turn at normal 
speed for 15 meters. The wearable sensors were tethered and 
instrumentation setup took approximately 15 minutes. 

B. IMU pre-processing

 IMU signals were low-pass filtered (6th order, 
Butterworth) at 25 Hz. The estimated thigh and shank 
orientation angles relative to vertical were calculated using a 
complementary filter. To determine ground truth labels for the 
gait phase (stance or swing) of each leg, we applied an 
algorithm that searches for peaks and threshold crossings in 
the sagittal plane angular velocity of the shank segment [15]. 
Briefly, midswing events were identified as the maximum 
peaks, toe off events were identified as the minimum peaks 
just before midswing, and heel contact events were identified 
as the first zero-crossings after each midswing. 

C. Depth sensor pre-processing 

 We recorded depth data frames as point clouds (171x224 
pixels) using a Matlab library provided by the camera 
manufacturer [14]. We used the Matlab (R2017a) Computer 
Vision System Toolbox to convert point clouds into x, y, and 
z real-world dimensions. Point clouds were denoised to 
remove outliers above a threshold of 5 cm, and downsampled 
using a 1 cm grid filter for computational efficiency. The 3D 
point clouds and corresponding 2D projections were used as 
contextual information for segmenting the leg from the visual 
scene (Figure 2). 

a) Right leg: Although the right leg was 
field of view, information about the movement of the 
environment (i.e. ground plane) can be used for gait 
segmentation. During stance, the leg rolls over the foot; thus, 
changes in leg orientation result in rotation of the environment 
relative to the camera reference frame. Therefore, the degree 
of rotation can be used to infer whether the right (ipsilateral) 
leg is in stance or swing phase (Figure 2a). First, we 
determined that the initial tilt of the environment due to 
camera positioning was approximately 30° (based on the 
ground orientation during a standing trial for which the 
subject remained stationary). To remove this initial rotation 
from the original point clouds, we applied an affine transform 

 

 

Figure 1. Sensor schematic. 

IMUs were placed bilaterally 

on the thigh and shank, and a 

single depth sensor was 

placed on the right thigh 

(internally rotated by ~10 

degrees and tilted toward the 

ground by ~30 degrees). 

Isometric and side views of a 

single frame of raw depth 

data with the left 

(contralateral) foot visible 

are shown. The raw angular 

velocity and acceleration 

data from the right thigh 

IMU are also shown for part 

of a walking trial. 
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based on an Euler angle rotation matrix. Next, we used 
RANSAC [17] to fit a plane to the points within a region of 
interest (ROI) directly in front of the user. The angle of this 
plane relative to horizontal was defined as the ground angle 
( ) feature for detecting right toe off (RTO) events. 

b) Left leg: When leading, the left leg was in the depth 
field of view, with the angle of the leg relative to the 

ground serving as a correlate of gait phase. We used the 
previously calculated ground angle, , to identify and remove 
points belonging to the ground plane from the point clouds 
and their 2D projections to simplify identification of the left 
leg. Next, to isolate connected regions in the ground-removed 
field of view we sequentially applied morphological 
thickening, closing, and hole filling to the binarized 2D 
projection. We performed connected component labeling 
(CCL) on remaining regions in the 2D projection, and regions 
with 500-10,000 pixels were labeled as the shank. We fit a 
border to the shank-labeled pixels and fit a line through the 
centroid of this shape using linear regression (Figure 2b). The 
angle of this line relative to vertical was defined as the shank 
angle ( ) feature for detecting left heel contact (LHC) events. 

D. Gait event prediction 

The depth and IMU data were temporally aligned by 
upsampling the depth data 
of 500 Hz. Next, the data were partitioned into 300 ms sliding 
windows (30 ms increment) to match current standards for 
online control of a powered leg prosthesis using intent 

recognition [1]. The ground truth (stance or swing) for each 
window was defined as the final label of the window. We used 
two independent methods (IMU or depth data only) to identify 
LHC and RTO events. Assuming a unilateral assistive device 
was worn on the right leg, LHC and RTO would represent the 
critical events spanning the double support phase of interest. 
Leave-one-out cross-validation was performed by training on 
the windows from all but one trial after aggregating trials from 
all walking activities. We assessed the accuracy of detecting 
LHC and RTO (within 200 ms of the corresponding ground 
truth) using the F1 score and mean/standard deviation of the 
residuals between classifier predictions and the ground truth 
for all steps except for gait initiation and termination from all 
trials. Events detected more than 200 ms before/after the 
corresponding ground truth were considered outliers and 
excluded from the average. 

IMU only: We compared different combinations of sensors 
including right thigh IMU only (R Thigh), right thigh and 
shank IMUs (R Thigh + Shank), and bilateral thigh and shank 
IMUs (R/L Thigh + Shank). Six features (mean, standard 
deviation, maximum, minimum, initial value, final value) 
were extracted from each window for each IMU channel (tri-
axial accelerometer, tri-axial gyroscope, calculated 
orientation angle) for a total of 42 features per IMU sensor. 
These heuristic features were chosen because they are 
computationally efficient and are typically used in intent 
recognition for prosthesis control [1]. Features were 
normalized to have zero mean and unit variance and the 

 

Figure 2. Depth 
sensor pre-processing 
flowchart. The raw 
depth data and 2D 
projection were used 
to produce an estimate 
of the ground angle 
( ) and shank angle 
( ) to estimate right 
toe off and left heel 
contact events, 
respectively. 

 

Figure 3. IMU estimate of gait 

event probabilities. IMU signals 

were partitioned into 300 ms 

sliding windows, from which 

statistical features were extracted. 

PCA was used to reduce the 

dimensionality to 25 and an LDA 

or SVM classifier was fit to 

predict stance or swing for each 

leg on a window-by-window 

basis. 
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dimensionality was reduced using principal components 
analysis (PCA) to 25 components, which accounted for more 
than 99 percent of the total variance (Figure 3). Preliminary 
results showed that the boundary between stance and swing 
in the feature space may be better represented by a nonlinear 
classifier. Therefore, we compared a linear discriminant 
analysis (LDA) classifier to a support vector machine (SVM) 
with Gaussian kernel for estimating probability of each class 
(stance or swing) to make predictions for each window.  

Depth sensor only: The overall trajectories of the two 
depth-based features, rather than their magnitudes, were more 
consistently related to the timing of the predicted gait events. 
Therefore, unlike the IMU predictions, we used a template 
matching method to estimate the probability of detecting RTO 
and LHC from the ground and shank angles (Figure 4a). First, 
we created templates for RTO and LHC features by averaging 
the windows immediately preceding their respective ground 
truth gait events in the training data (Figure 4b). Next, we 
computed the element-wise product between each sliding 
window and the corresponding template and applied a binary 
mask outputting one for each point in the sliding window 
where the feature and template had matching signs and zero 
otherwise. Lastly, the probability of detecting a gait event in 
each window was estimated by averaging the output of the 
binary mask over the window length, yielding a value 
between 0 and 1 (Figure 4c). After tuning, a probability 
threshold of 0.55 was set to identify a range of candidate 
windows for detecting a gait event. Empirically, the range of 
possible RTO windows tended to end near the ground truth 
and the range of possible LHC windows tended to be centered 
near the ground truth (Figure 5). Therefore, RTO was 
predicted as the last window in the range and LHC was 
predicted as the window with highest probability (Figure 5). 

Sensor fusion: We computed an equally weighted average 
of the probabilities of each event based on the IMU and the 
depth sensor separately. After tuning, a threshold of 0.55 was 
applied to the average probability to identify a range of 

possible windows for detecting gait events based on fusion of 
the right thigh IMU and depth sensor (Fused). Empirically, 
the range of possible LHC and RTO windows tended to begin 
near the corresponding ground truth; therefore, LHC and RTO 
were predicted as the first window in their respective range of 
windows (Figure 5). 

III. RESULTS 

RTO and LHC predictions were made with LDA and SVM 
classifiers. The residuals for LHC predictions with SVM were 
-34 ± 96 ms (mean ± S.D.) with no outliers and -16 ± 63 ms 
with 2 outliers for R Thigh and Fused, respectively. The 
residuals for RTO predictions with SVM were 7 ± 30 ms with 
one outlier and 13 ± 60 ms with no outliers for R Thigh and 
Fused, respectively.  

The LDA classifier outperformed SVM, so the results 
shown in Tables I and II are for LDA. Predictions for RTO 
were generally more accurate than for LHC when using right 
leg sensors only (in terms of mean, standard deviation, 
outliers, and F1 scores). The average residuals were also 
mostly negative, meaning that events were predicted before 
the ground truth occurrence. Compared to predictions made 
using IMU sensors only, predictions with the depth sensor 
only had larger variability. There were also more outliers for 
LHC when using the depth sensor only, but outliers were 
reduced with sensor fusion. Unilateral sensor fusion slightly 
improved prediction accuracy compared to R Thigh, and 
approached the accuracy of R/L Thigh + Shank. 

IV. DISCUSSION 

 In this work we developed a novel approach to bilateral gait 
segmentation using a single IMU and depth sensor, both worn 
unilaterally on the right thigh. Our approach independently 
predicts left heel contact and right toe off events using data 
from the IMU only, depth sensor only, or both sensors 
together. The IMU-based predictions were made by either an 
LDA or SVM classifier trained with heuristic features. For the 
depth-based prediction, we extracted features from the 

 
Figure 4. Depth sensor estimate of gait event probabilities. (a) Depth-based features for predicting right toe off (RTO) and left heel contact (LHC). The ground 
truth state (solid black) is either stance (1) or swing (0). (b) Templates (solid green) for depth-based features were calculated by averaging  all 300 ms windows 
(solid gray) extracted just prior to ground truth RTO and LHC events in the training data. (c) The probability of detecting RTO and LHC for any given window 
was estimated by binarizing the element-wise product of the feature (dashed green) and its corresponding template (solid green). The probabilities of RTO 
and LHC are displayed (represented by the shaded proportion of the window).  
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environment and left leg, both in the field of view, and 
implemented a template matching algorithm to assign a 
probability of detecting each gait event. We fused the 
predictions using an equally weighted average of the IMU- 
and depth-based probabilities and assessed performance using 
the residuals and F1 scores. 

Our approach accurately detected both events (usually 
before the ground truth) for a variety of level ground walking 
tasks which included different speeds and paths. Without any 
additional adjustments, we did not notice any task-related 
changes in performance. As expected, we detected the 
ipsilateral (i.e. sensor side) toe off events more accurately 
than the contralateral heel contact events. Because the 

ordination was intact, we also expected 
the prediction accuracy for left heel contact events using right 
leg IMUs to not deteriorate drastically. The classifiers trained 
with heuristic features from the IMU learned to associate right 
thigh kinematics with left leg state; however, we expect this 
association to weaken for subjects with gait impairments. 
Somewhat surprisingly, the depth sensor achieved low mean 
residuals for both gait events using only one depth-based 
feature for each prediction. Not surprisingly, using the depth 
sensor alone resulted in greater variability and more outliers 
for two main reasons.  

First, we chose not to include the IMU into our estimate of 
the ground plane, which affected the segmentation of the 
contralateral foot. Because the outline of the foot was often 
sparse or absent after ground removal, we chose to estimate 
heel contact using shank angle. Shank angle served as a 
convenient proxy for detecting heel contact because it is 
related to foot rollover but it is only indirectly related to 
ground contact. The estimate of shank angle could have also 
been affected by movement of the sensor during walking and 
thresholding applied during image processing.  

Second, the template matching procedure was sensitive to 
temporal misalignment and the binary masking operation 
based on the signs of the signals did not always adequately 
reflect the qualitative similarity between the sliding window 
and template. We also found that sensor fusion slightly 
improved prediction accuracy, approaching that of bilateral 

shank and thigh IMUs. Because predicting gait events using 
depth data makes no assumptions about interlimb 
coordination, we expected sensor fusion to improve 
prediction accuracy. We believe this is an important finding 
because it demonstrates that with sensor fusion, a unilateral 
setup can achieve similar accuracies to a bilateral setup. 

TABLE I.  ACCURACY OF LHC PREDICTIONS 

 
Number of steps = 57 

Mean 

(ms) 

S.D.  

(ms) 
Outliers F1  

R Thigh -11 45 3 0.94 

R Thigh + Shank 2 42 0 0.90 

R/L Thigh + Shank -6 34 0 0.97 

Depth only -14 85 13 0.87 

R Thigh + Depth -6 48 5 0.93

TABLE II. ACCURACY OF RTO PREDICTIONS 

 
Number of steps = 54 

Mean 

(ms) 

S.D.  

(ms) 
Outliers F1 

R Thigh -6 41 0 0.97 

R Thigh + Shank 2 35 0 0.98 

R/L Thigh + Shank -7 35 0 0.98 

Depth only -7 85 0 0.94 

R Thigh + Depth -5 39 0 0.92 

Limitations and Future Work: 

Although our proof of concept provided promising results, 
there are several limitations to this work. One limitation is that 
we only tested our algorithm on a limited number of level 
walking trials. We anticipate that some modifications, 
particularly to the ground and leg segmentation steps, may be 
necessary to adapt this algorithm to other activities such as 
ascending/descending stairs/ramps. We also excluded gait 
initiation and termination steps because their kinematics 
differ from steady state steps. Thus, a separate classifier may 
be required for accurately segmenting non-steady-state steps.  

Our work is also limited by having only one able-bodied 
subject. In the future, we plan to assess the generalizability of 
our method to individuals with gait impairments, to a larger 
collection of walking data, and to testing and training on 
different subjects. We expect gait segmentation using 
unilateral IMU sensors to degrade for subjects with gait 
impairments or asymmetries, especially for identifying 
contralateral heel contact. Therefore, we expect the value of 
depth data for gait segmentation to be more evident when the 
assumption of intact interlimb coordination is violated.  

We also propose several changes to the setup, protocol, and 
image processing. We did not use an independent sensor 
modality to acquire the ground truth for heel contact and toe 
off events for convenience. In the future, a force sensing 
resistor (FSR) could be used to provide an alternative estimate 
of the ground truth. We could also test our depth-based 
algorithm in different environments to determine its 
robustness to clutter, ground reflectance, and differently 
situated environments but our algorithm seemed to perform 
well even when obstacles were in the field of view.  

Figure 5. Gait event prediction. The solid colored traces represent the 

probabilities of detecting a) LHC and b) RTO. The shaded regions represent 

the range of possible windows for detecting a gait event using the R Thigh 

IMU only (IMU), depth sensor only (DEPTH), or both (FUSED). The tick 

marks represent the final predictions for LHC (filled) and RTO (empty). 
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Adding the pitch estimate from the thigh IMU to our 
calculation of the ground plane could have improved our 
predictions by preserving more of the foot during ground 
removal. In this work, we only tested one depth sensor 
configuration (frame rate, resolution, position), which may 
not have been optimized for spatiotemporal resolution and 
field of view for gait segmentation. Also, the positioning of 
the sensor on the thigh may not be ideal because it would not 
allow users to wear long pants or skirts. In the future, we will 
consider other positions that can capture both the environment 
and contralateral leg in the field of view. Additionally, we 
could use a single integrated sensor such as the Lenovo Phab 
2 Pro [18] or Asus Zenfone AR [19], smartphones which 
integrate depth and inertial sensors. Additionally, in this work 
the depth sensing implementation was not optimized for 
timing, resulting in a computation time of 1.16 ± 0.56 s for 
extracting features from each point cloud. This is slower than 
desired, and in future work the computation time will be 
optimized and implemented in Python, rather than in Matlab. 

We believe our approach to gait segmentation may be 
especially valuable for controlling powered assistive devices, 
because it would provide an additional safeguard to ensure the 
user is in double support phase before the device becomes 
compliant and transitions to swing phase. To validate the 
feasibility of our technique for powered prostheses, we will 
replicate our protocol with individuals walking with a 
powered knee-ankle prosthesis. Our approach may also be 
relevant to coordinating the behavior of two different 
unilateral devices which do not share sensors. Additionally, 
the features we used for gait segmentation (or others related 
to the contralateral leg position in space and its interaction 
with the environment) may also be improve prediction of the 
upcoming locomotor activity (i.e. intent recognition). For 
instance, the angle of the shank and height of the foot will 
likely differ between level ground walking, stair ascent and 
ramp ascent. Our overall goal will be to develop a system that 
performs gait segmentation and intent recognition in parallel. 
Finally, we will focus on online implementation of this 
system and integration with a powered prosthesis. 

V. CONCLUSION 

We developed a novel approach to bilateral gait 
segmentation based on a single IMU and depth sensor to 
predict right toe off and left heel contact events, which 
represent the beginning and end of a double support phase. 
The results of our proof of concept showed that predictions 
based on unilateral IMU and depth-based information 
approached the accuracy of using bilateral shank and thigh 
IMUs. By extending the use of depth data beyond 
environmental sensing to gait segmentation we provide an 
alternative strategy for sensing the state of both legs using 
wearable sensors, which could make assistive devices more 
user-friendly and improve their performance. 
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