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Wearable lower-limb assistive devices have the potential to dramatically improve the

walking ability of millions of individuals with gait impairments. However, most control

systems for these devices do not enable smooth transitions between locomotor

activities because they cannot continuously predict the user’s intended movements.

Intent recognition is an alternative control strategy that uses patterns of signals

detected before movement completion to predict future states. This strategy has

already enabled amputees to walk and transition seamlessly and intuitively between

activities (e.g., level ground, stairs, ramps) using control signals from mechanical sensors

embedded in the prosthesis and muscles of their residual limb. Walking requires interlimb

coordination because the leading and trailing legs have distinct biomechanical functions.

For unilaterally-impaired individuals, these differences tend to be amplified because

they develop asymmetric gait patterns; however, state-of-the-art intent recognition

approaches have not been systematically applied to bilateral neuromechanical control

signals. The purpose of this study was to determine the effect of including contralateral

side signals for control in an intent recognition framework. First, we conducted an

offline analysis using signals from bilateral lower-limb electromyography (EMG) and joint

and limb kinematics recorded from 10 able-bodied subjects as they freely transitioned

between level ground, stairs, and ramps without an assistive device. We hypothesized

that including information from the contralateral side would reduce classification errors.

Compared to ipsilateral sensors only, bilateral sensor fusion significantly reduced error

rates; moreover, only one additional sensor from the contralateral side was needed to

achieve a significant reduction in error rates. To the best of our knowledge, this is the

first study to systematically investigate using simultaneously recorded bilateral lower-limb

neuromechanical signals for intent recognition. These results provide a device-agnostic

benchmark for intent recognition with bilateral neuromechanical signals and suggest that

bilateral sensor fusion can be a simple but effective modular strategy for enhancing the

control of lower-limb assistive devices. Finally, we provide preliminary offline results from

one above-knee amputee walking with a powered leg prosthesis as a proof-of-concept

for the generalizability and benefit of using bilateral sensor fusion to control an assistive

device for an impaired population.
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INTRODUCTION

Worldwide, millions of individuals experience conditions such as
stroke, spinal cord injury, and limb loss, which can cause severe
and lasting gait impairments that limit functional independence
and reduce quality of life (Verghese et al., 2006). Recent
advances in mechatronic design and embedded systems have also
led to the proliferation of wearable assistive devices that can
provide locomotion assistance by actuating lower-limb joints.
Such devices include robotic lower-limb prostheses, orthoses,
and exoskeletons (e.g., Varol et al., 2010; Quintero et al., 2012;
Mooney et al., 2014; Ottobock, 2015, 2016; Panizzolo et al.,
2016; Young and Ferris, 2017). Compared to their mechanically
passive counterparts, powered devices can be controlled to
actively change their mechanical properties between different
locomotor activities (e.g., level ground, stairs) and to inject
energy into the system (e.g., powered plantarflexion in late
stance). However, to maximize the potential benefits of powered
assistance and to avoid disrupting the gait cycle, these devices
must predict state changes before they occur. Currently, though,
most control systems for these assistive devices require the
user to explicitly indicate an intended transition with a key
fob or an unnatural pre-programmed motion pattern (e.g.,
bouncing up and down on the Ottobock C-Leg) (Ottobock,
2015). Although the human-machine control interface varies
among lower-limb assistive devices, their control systems share
similar ideals. To restore normal walking ability, they should
accurately infer and execute the user’s locomotor intent in
a manner that is automatic, seamless, and intuitive to the
user.

To more intuitively infer the user’s locomotor intent for
control, intent recognition has been successfully developed for
and primarily applied to powered lower-limb prostheses as an
alternative strategy for predicting the appropriate assistance to
provide. We define the intent recognition control framework
as using information from the human, assistive device, and/or
environment detected before movement completion (e.g.,
windows extracted before heel contact or toe off events) to predict
the user’s upcoming locomotor activity on a step-by-step basis
(Varol et al., 2010). Several studies have already demonstrated
the benefits of unilateral sensor fusion for controlling a prosthesis
with intent recognition strategies which can operate in real-time on
embedded systems. For example, neuromechanical sensor fusion
of EMG from the residual limb and prosthesis load information
from five above-knee amputees walking with a passive device
significantly reduced error rates compared to either sensor set
alone (Huang et al., 2011). Fusing above-knee EMGwith a diverse
set of mechanical sensors embedded in a powered knee-ankle
prosthesis comprised of potentiometers and encoders at the knee
and ankle, an axial load cell, and 6-degree-of-freedom (DOF)
inertial measurement unit (IMU) on the shank also significantly
reduced error rates (Young et al., 2014a). In subsequent work,
the addition of a 6-DOF load cell and calculated thigh and
shank inclination angles to the existing set of mechanical sensor
information further reduced error rates; the control system also
continued to benefit from fusion with EMG (Spanias et al., 2015).
As an alternative to EMG, capacitive sensing has also been used

for intent recognition with below-knee amputees (Zheng et al.,
2014).

In addition to these unilateral sensor fusion strategies, other
powered prosthesis-specific control system modifications (e.g.,
merging ramp ascent and level walking classes, using mode-
specific classifiers, and delaying predictions by 90ms) have
further reduced error rates (Hargrove et al., 2015; Simon et al.,
2017; Spanias et al., 2018). Error rates during online sessions (i.e.,
the user interacts dynamically with the control system) using
state-of-the-art intent recognition strategies have approached
approximately 4% (Spanias et al., 2018); although impressive,
they must be further reduced before intent recognition can be
used to control a powered assistive device safely and reliably over
long periods of time. Despite promising potential for controlling
powered prostheses, intent recognition is still not commonly
applied to controlling devices for individuals with impaired but
intact limbs. Notably, powered orthoses and exoskeletons differ
from prostheses because they assist by supplementing instead
of substituting the movement of the instrumented limb(s). A
few devices have used multimodal sensor fusion for control but
they typically rely on pre-defined thresholds to switch between
locomotor activities and are mostly limited to identifying
transitions between sitting, standing, and level ground walking.
For instance, the estimated location of the center of pressure
controls switching between sitting, standing, and walking modes
of a powered hip-knee orthosis for paraplegic individuals
(Quintero et al., 2011, 2012). Ground reaction forces, posture,
EMG, and electroencephalography (EEG) have also been used to
infer user intent in order to synchronize robotic assistance with
paraplegic subjects’ movement during gait initiation/termination
and level ground walking (Suzuki et al., 2007; Kilicarslan et al.,
2013). Bilateral lower-limb neuromechanical signals have also
been used to predict sitting, standing, and walking in one
patient with multiple sclerosis using intent recognition (Zhang
and Huang, 2013). Yet regardless of the devices or control
signals used, incorrectly predicting locomotor activities still
presents challenges for the long-term clinical viability of intent
recognition.

Prediction errors can be categorized as steady-state or
transitional, depending on whether the true locomotor activities
before and after each gait event are the same (i.e., steady-state)
or different (i.e., transitional). Whereas transitional errors can be
especially destabilizing and more likely to result in injury (e.g.,
at the top of the stairs when descending) steady-state errors are
harder to anticipate and more frustrating for users. Although
intent recognition algorithms can produce seamless transitions
during online use, transitional error rates for prosthesis control
are still much higher than for steady-state steps (Hargrove
et al., 2015; Spanias et al., 2015, 2018; Simon et al., 2017).
Walking, especially transitions, requires bilateral coordination of
the lower body. For example, the anticipatory lower-limb joint
mechanics and EMG signals for able-bodied subjects differed
for transitions from level ground walking to stair ascent and
descent and for leading and trailing legs (Peng et al., 2016).
The mechanical work performed by each leg also differs for
both uphill and downhill walking (Franz et al., 2011). Although
individuals with unilateral gait impairment typically develop
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new patterns of interlimb coordination, their non-affected
limb generally remains anatomically and biomechanically intact
(Chen et al., 2005; Segal et al., 2006; Ingraham et al., 2016).
Yet, nearly all assistive devices that are commercially available
and/or used in research settings do not incorporate information
from both legs and it remains unknown whether contralateral
side signals contain rich and robust enough information about
the user’s intent to justify their inclusion. For example, the
powered Vanderbilt knee-ankle prosthesis (Varol et al., 2010)
and hydraulic C-Leg knee prosthesis (Ottobock, 2015) and
C-Brace knee ankle foot orthosis (Ottobock, 2016) are all
controlled using only signals from the affected side; however,
we hypothesized that information from the unaffected leg could
improve controllability.

Previously, instrumenting the unaffected leg was impractical
and considered a major barrier to clinical feasibility. Also,
approaches for incorporating information from the contralateral
limb have been limited beyond echo control (Grimes et al.,
1977; Grimes, 1979; Joshi et al., 2010) and complementary
limb motion estimation (Vallery et al., 2011). Echo control
required cyclical activities, for which movement had to be
initiated by the unaffected side, because the kinematic trajectory
of the intact limb was simply “replayed” on the prosthesis side
with a half-step delay. Complementary limb motion estimation,
which uses residual body motion and interjoint couplings
to infer an appropriate reference trajectory for the impaired
limb(s), is a more intuitive and cooperative control strategy
but has only been implemented for position control. Now,
minimally invasive wearable sensors capturing neuromechanical
signals are becoming more ubiquitous and can be more
easily placed on the contralateral limb to supplement control
information from sensors embedded in an assistive device. For
instance, soft bio-electronics for physiological recording are
already clinically viable (Liu et al., 2016). With these recent
developments, minimally invasive bilateral instrumentation of
the lower extremities is becoming more feasible. But to our
knowledge, only a few studies have investigated bilateral sensor
fusion for intent recognition. For example, able-bodied subjects
wore bilateral pressure insoles and unilateral IMU sensors on
the thigh, shank, and foot (Chen et al., 2014) or walked in
a lower-limb exoskeleton with embedded sensors measuring
bilateral ground reaction forces and shank/foot orientation to
control knee assistance (Long et al., 2016). Although both studies
achieved low error rates, their findings may not translate well
to seamless, online control because they used prediction periods
spanning the entire upcoming step instead of only the instant
when the upcoming step begins.

Therefore, we still lack a clear understanding of both how
bilateral sensor fusion across different modalities systematically
affects intent recognition error rates and whether prosthesis-
derived intent recognition strategies perform well when
generalized to non-prosthesis applications. In this study we
present a proof-of-concept for an intent recognition control
system using a broad set of bilateral lower-limb neuromechanical
signals recorded from wearable sensors instrumented on
able-bodied subjects freely walking without an assistive device.
Our overall objective was to conduct an offline analysis to

systematically compare and benchmark the performance of
unilaterally and bilaterally -informed intent recognition control
systems and to identify the most critical sensors. We confirmed
our hypothesis that sensor fusion across different modalities
and across legs would reduce steady-state and transitional
error rates. We also report preliminary results from a separate
offline analysis on one unilateral above-knee amputee walking
with a powered knee-ankle prosthesis to demonstrate the
benefit of incorporating kinematic information from the
unimpaired leg to improve control of an assistive device with
intent recognition. We expect our positive results to further
the ongoing development of and broaden the scope of intent
recognition strategies for controlling wearable lower-limb
assistive devices.

MATERIALS AND METHODS

Experimental Protocol
This study was carried out in accordance with the
recommendations of the Northwestern University Institutional
Review Board with written informed consent from all subjects.
Following IRB approval, 10 able-bodied subjects (7 male,
3 female; 23–29 years, 160–193 cm, 54–95 kg) completed
the experiment. Before walking, subjects were instrumented
bilaterally with wearable sensors to measure lower limb muscle
activity and joint and limb kinematics. EMG signals were
recorded using bipolar surface electrodes (DE2.1; Delsys, Boston,
MA, USA) from the same seven muscles in each leg: tibialis
anterior (TA), medial gastrocnemius (MG), soleus (SOL), vastus
lateralis (VL), rectus femoris (RF), biceps femoris (BF), and
semitendinosus (ST). These muscles were chosen because they
are in part responsible for hip and knee flexion/extension
and ankle plantarflexion/dorsiflexion, movements that are
commonly assisted by wearable devices. They are also relatively
easy to target when facing the subject from in front and
behind and are similar to muscle sites used by Sylos-Labini
et al. (2014). Electrode placement was guided by the Surface
ElectroMyoGraphy for the Non-Invasive Assessment of Muscles
(SENIAM, seniam.org) standards. We palpated to locate the
muscle belly and oriented the electrode along the primary fiber
direction (Kendall et al., 2005), and verified placement by having
subjects perform maximum voluntary contractions. The muscle
sites were prepared by removing excess hair and the skin was
cleaned by mildly scrubbing with an alcohol wipe. Sensors were
attached to the skin with a double-sided adhesive. Signals were
amplified by 1000x, hardware band-pass filtered between 20 and
450Hz (Bagnoli 16, Delsys), and sampled at 1 kHz.

Joint kinematic signals (sagittal plane only) were recorded
using electrogoniometers (SG150; Biometrics Ltd, Newport, UK)
placed along the knee and ankle and sampled at 500Hz. 6-
DOF (tri-axial accelerometer and gyroscope) IMU’s were placed
bilaterally on the subjects’ thigh (below RF EMG electrode)
and shank (adjacent to TA EMG electrode) and sampled
at 500Hz (MPU-9250; Invensense, San Jose, CA, USA). All
signals were simultaneously recorded with a custom 16-bit data
acquisition device that permits multi-rate sampling. We chose
these wearable sensors because they are analogous to sensors
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commonly embedded in prostheses, orthoses, and exoskeletons
(such as joint position encoders and shank/thigh IMU’s) and are
more easily integrated with existing device-based sensorization in
a hypothetical hybrid system. Other force and interaction torque
sensors such as load cells and strain gauges were excluded because
they are not as relevant for our device-agnostic approach and are
more difficult to integrate if not already embedded in the device.

To facilitate integration with our data acquisition software,
all wearable sensors were used in a tethered setup; as a
drawback, fully instrumenting one leg took up to an hour.
The full instrumentation setup is shown for a representative
subject in (Figure 1 top, middle). Prior to data collection, the
goniometers were calibrated while the subject was in the upright
standing position. In an experimental session, each subject
completed approximately 25 repetitions of a circuit consisting
of walking on level ground (LW), ascending/descending a ramp
with a 10◦ slope (RA/RD), and ascending/descending a four-
step staircase (SA/SD) step-over-step using a data collection
procedure previously described in Young et al. (2014b). These
activities were chosen because they encompass the main types
of terrain likely encountered in community ambulation. Subjects
were instructed to freely transition between activity modes at
their self-selected speed while the experimenter labeled the true
locomotor intent of the subject using a key fob.

Signal Processing
Heel contact and toe off gait events for each leg were reliably
identified by finding peaks in the low-pass filtered (1st order
Butterworth, 6Hz) sagittal plane angular velocity of the shank
segment using a dual-minima method similar to (Jasiewicz
et al., 2006; Maqbool et al., 2016). Briefly, the largest peaks in
angular velocity were first used to identify mid-swing events.
Toe off and heel contact events were identified by searching for
peaks before and after each mid-swing event, respectively. Gait
initiation and termination strides and trials during which the
subject paused, stumbled, or tripped were excluded. For each
subject, there were 530 ± 46 heel contact events and 536 ±

45 toe off events for each leg (mean ± standard deviation).
EMG signals were first high-pass filtered (6th order Butterworth)
at 20Hz to attenuate motion artifact (De Luca et al., 2010).
EMG signals were then notch-filtered (6th order Butterworth,
6Hz width) at 60, 180, and 300Hz (based on spectral analysis)
to remove ambient interference. Goniometer and IMU signals
were low-pass filtered (6th order Butterworth) at 10 and 25Hz,
respectively. Because we did not use foot-mounted IMU’s, joint
velocities could not be estimated using inertial signals only for
the ankle. For consistency, we indirectly estimated joint velocities
for both the knee and ankle by taking the centered-difference
numerical derivative of the low-pass filtered joint position signals
instead and added these velocities to the goniometer channels.

All signals were segmented into 300ms analysis windows
before each identified heel contact or toe off gait event (one
window/event). For each window, we extracted features
previously used in intent recognition for online control of a
powered knee-ankle prosthesis. Features for goniometer and
IMU signals included the mean, standard deviation, maximum,
minimum, initial, and final values (6 features/channel)

FIGURE 1 | Instrumentation setup showing EMG, goniometer, and IMU

sensor placement [adapted from Hu et al. (2018)]. (Top) 11 total sensors

(Continued)
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FIGURE 1 | (labeled) were placed on each leg. The coordinate frame of IMU

sensors is also shown. (Middle) A representative subject instrumented with all

bilateral sensors in a tethered setup. The subject provided written informed

consent for the publication of this image. (Bottom) Classifier comparisons for

four modality groups and three laterality groups: EMG, goniometer (GONIO),

IMU, fused (ALL), ipsilateral (I), contralateral (C), and bilateral (B). The number

of sensors and extracted features (in parentheses) are shown next to each

classifier configuration.

(Varol et al., 2010). Features for EMG signals included the
mean absolute value (MAV), waveform length, number of
zero crossings and slope sign changes, and the coefficients of a
sixth-order autoregressive model (10 features/channel) (Huang
et al., 2005; Hargrove et al., 2008). These heuristic features were
chosen because they can be computed efficiently on an embedded
system and concisely capture the general shape of mechanical
signals and the frequency content of EMG signals. Bilaterally,
there were a total of 22 sensors (14 EMG, 4 goniometer, 4 IMU)
and 46 channels (14 EMG, 8 goniometer, 24 IMU). The feature
dimensionality for all ipsilateral and bilateral signals was 166 and
332, respectively (Figure 1, bottom).

Offline Classifier Evaluation
For each subject, we evaluated leg- and mode/phase-specific
classifiers (e.g., right heel contact, left toe off) for several sensor
sets to compare their offline error rates (Figure 2). We used
a mode-specific classification scheme previously developed for
powered leg prosthesis control (Young and Hargrove, 2016),
which achieves lower error rates by encoding domain knowledge
about the allowable transition(s) from each mode. Briefly, 20
total classifiers were trained to encompass all combinations of
the four gait events (right/left heel contact or toe off) and five
locomotor activities (level ground, ramp ascent/descent, stair
ascent/descent). The total number of steps used to train each
classifier (combined between legs for all subjects) is reported
in Table 1. The appropriate classifier for each prediction was

selected based on the activity just before the gait event (i.e.,
incoming activity based on the key fob label). The possible

outputs for each classifier (i.e., predicted activities) only included
remaining in the current locomotor activity or transitioning to

another allowable mode (e.g., in stair ascent mode, remaining in

stair ascent or transitioning back to level walking but excluding
stair descent and ramp ascent/descent). The error rate was
defined as the proportion of incorrectly classified gait events in
the testing set and was computed by averaging across legs and gait
events for each subject. Errors were also categorized as steady-
state or transitional. We performed randomized 10-fold cross-
validation for each subject for 12 different sensor sets (Figure 1,
bottom) using the steps collected from all circuits completed
during the experimental session. The ipsilateral side was defined
as the side on which the gait event was identified, which could
have been either the leading or trailing leg. Sensors were divided
into four modality groups: EMG only (EMG), goniometer only
(GONIO), IMU only (IMU), or all combined (ALL). Sensors
were also divided into three laterality groups: ipsilateral (I),
contralateral (C), or bilateral (B).

FIGURE 2 | Mode-specific classification scheme. Ten classifiers were trained

for each leg corresponding to all combinations of incoming activity [level

walking (LW), ramp ascent (RA), ramp descent (RD), stair ascent (SA), and stair

descent (SD)] and gait event [heel contact (HC) and toe off (TO)]. The possible

predictions for each classifier are listed as steady-state (SS) or transitional (T)

activities.

TABLE 1 | Number of training examples for each mode-specific classifier.

Classifier LW RA RD SA SD Total

HCLW 4,523 240 240 239 248 5,490

TOLW 4,637 245 246 253 243 5,624

HCRA 243 1,408 1,651

TORA 252 1,416 1,668

HCRD 239 1,757 1,996

TORD 245 1,762 2,007

HCSA 238 489 727

TOSA 245 472 717

HCSD 248 475 723

TOSD 242 478 720

The correct labels are listed in the header and instances are aggregated across subjects

and between legs.

Linear discriminant analysis (LDA) has emerged as a
convenient a priori choice of classifier for intent recognition
for the control of upper- and lower-limb prostheses because
it provides a good compromise between classification accuracy
and computational efficiency (Hargrove et al., 2007; Scheme
and Englehart, 2011). Other commonly used classifiers include
support vector machines (SVM) and artificial neural networks
(ANN), which can represent more complex, non-linear decision
boundaries and may be more appropriate for modeling
transitions. The sensor set containing all bilateral signals contains
more features than previously used in intent recognition for
lower-limb prostheses so we also assessed the effect of classifier
type on error rates for ipsilateral and bilateral sensor sets
containing all modalities. For all classifiers, the feature data
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were normalized to have zero mean and unit variance. For
LDA, the input dimensionality was further reduced using
principal components analysis (PCA) to preserve 95% of the
total variance and the prior for each classifier was set to be
equiprobable. Hyperparameters for SVM (one-vs-one, linear
kernel, C = 10 using the scikit-learn Python package) and
ANN (one hidden layer with 10 units, hyperbolic tan activation
function, stochastic gradient descent with momentum, adaptive
learning rate initialized to 0.1 using the scikit-learn Python
package) were chosen based on pilot data.

We performed repeated measures ANOVA for LDA classifiers
with error rate as the response variable, modality and laterality
(ipsilateral and bilateral only) as fixed within-subject factors,
and subject as a random factor. We expected some modalities
would benefit more from bilateral information so we included
an interaction term. Post-hoc comparisons (paired t-test) with
Bonferroni correction were conducted on statistically significant
factors. We also used paired t-tests to compare ipsilateral and
contralateral sensor sets. We performed repeated measures
ANOVA for the combined sensor set with error rate as the
response variable, laterality and classifier as fixed within-subject
factors, and subject as a random factor. We expected more
complex classifiers to perform worse for higher dimensionality
data so we included an interaction term. Post-hoc comparisons
(paired t-test) with Bonferroni correction were conducted on
statistically significant factors.

Optimal Sensor Selection
To determine the optimal number and type of sensors to
instrument on the contralateral leg, we performed sequential
forward selection for each subject to choose the sensors which
minimized overall error rate with LDA classification (10-fold
cross-validation), beginning with all ipsilateral sensors as the
baseline and ending with all bilateral sensors. We chose not
to identify the bilaterally optimal sensor combination (i.e.,
beginning with the empty set) because we were primarily
interested in the effect of adding contralateral sensors. After each
iteration, all features associated with the selected sensor were
added to the existing feature set and the selected sensor was
removed from the set of remaining sensors. The composition of
the sensor set after each iteration was recorded. We performed
repeated measures ANOVA with error rate as the response
variable, iteration as a fixed within-subject factor, and subject as a
random factor.We also performed post-hoc comparisons (paired
t-test) between iterations using a Bonferroni correction.

Preliminary Application to Controlling a
Powered Leg Prosthesis
Experimental Protocol
One individual with a left traumatic above-knee amputation (59
years, 48 years post-amputation, 83.9 kg, Medicare K3 functional
level) gave written informed consent to participate in this
study. The user was fitted to the Vanderbilt powered knee-ankle
prosthesis (Varol et al., 2010) by a certified prosthetist and was
experienced walking with the device (minimum of 5 h) (Simon
et al., 2014). During data collection, the experimenter manually
triggered the powered prosthesis into the correct mode as the

user performed tasks including shuffling while standing and
walking on level ground and ascending/descending stairs and
ramps. To add variability to these movements, the subject was
instructed to vary walking speed, include pauses, modify step
length, use different angles of approach, and limit upper body
support (e.g., only one hand on railing). The user always led with
the sound side for stair ascent approaches, with the prosthesis
side for stair descent approaches, and either side for ramp
ascent and descent approaches. Data from 17 mechanical sensors
embedded in the prosthesis were recorded at 500Hz including
knee and ankle joint position and velocity, motor currents,
prosthesis acceleration and angular velocity, calculated thigh and
shank inclination angles, and axial load. Two additional 6-DOF
(tri-axial accelerometer and gyroscope) IMU’s were worn by the
subject on the non-prosthesis side thigh and shank (Figure 3)
and sampled at 250Hz (MPU-9250; Invensense, San Jose, CA,
USA). The locomotor activity and state (i.e., phase of the gait
cycle) of the prosthesis were also recorded to label the data.

Signal Processing
The inclination angles of the non-prosthesis side shank and
thigh were calculated using a complementary filter and added
to the set of recorded signals to match inertial signals from the
prosthesis side. All signals were segmented into 300ms analysis
windows around gait events (i.e., heel contact, mid-stance, toe
off, mid-swing). Features including themean, standard deviation,
maximum, minimum, initial, and final values were extracted
from each window (6 features/channel) (Varol et al., 2010).

FIGURE 3 | Bilateral sensorization for powered leg prosthesis control. Inertial

measurement units were placed on the above-knee amputee subject’s

non-prosthesis side shank and thigh during offline data collection.
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With the addition of both non-prosthesis side shank and thigh
IMU’s, the total number of channels was 31 and the feature
dimensionality was 186. Feature data were normalized to have
zero mean and unit variance. Consistent with previous studies
(e.g., Simon et al., 2017), the dimensionality of the feature data
was reduced to 50 using PCA to prevent overfitting.

Offline Classifier Evaluation
To assess the offline classification accuracy, we implemented a
state-of-the-art mode-specific classification scheme which uses
delayed transitions (i.e., windows started 210ms before the gait
event and ended 90ms after the gait event) to control a powered
leg prosthesis using intent recognition (same as Simon et al.,
2017). This baseline classifier also merged the level ground
and ramp ascent data because those activities have similar
device assistance settings and previous studies have shown that
combining those activities is appropriate. We compared the
baseline classifier to a more generic one which neither delays
transitions nor merges level walking and ramp ascent activities.

We used LDA for all eight mode-specific classifiers (Simon et al.,
2017). Errors were categorized as steady-state or transitional
and error rate was defined as the proportion of incorrectly
classified gait events in the testing set after averaging across
all classifiers. We performed leave-one-out cross-validation on
all the steps recorded during the experimental session for four
different sensor sets: prosthesis sensors only, prosthesis with
contralateral shank or thigh IMU, and prosthesis with both
contralateral IMU’s.

RESULTS

Bilateral Neuromechanical Signals and
Features
Subjects’ bilateral neuromechanical signals were distinguishable
based on locomotor activity and mostly consistent between legs
and trials throughout the experimental session. Representative
data depicting all sensors except SOL, RF, and BF (similar to MG,

FIGURE 4 | Representative bilateral post-processed EMG signals. Bilateral filtered EMG (in volts) from upper and lower leg muscles for one subject for a complete

circuit consisting of level walking (LW), ramp ascent/descent (RA/RD), and stair ascent/descent (SA/SD). Turquoise traces represent the right leg and purple traces

represent the left leg. Circuits were recorded as two discontinuous trials (LW→SA→LA→RD→LW and LW→RA→LW→SD→LW) but are represented as continuous.
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VL, and ST, respectively) are shown in Figure 4 (EMG), Figure 5
(goniometer), and Figure 6 (IMU) for one representative circuit.
Qualitatively, unique patterns of activation in the feature space
(Figure 7) of certain channels aligned closely with different
activities and their associated transitions (only mean value
features shown for overlapping 300ms windows).

Offline Classifier Evaluation
There was a significant interaction effect between modality and
laterality (p= 5.53× 10−7). Simple main effects analysis showed
that overall error rates for classifiers using bilateral sensors were
significantly reduced compared to their unilateral counterparts
for almost all modality groups and machine learning algorithms
(Figure 8, Table 2). There was a significant effect of classifier
(p = 2.22 × 10−16) for the combined sensor sets without

interaction between classifier and laterality (p = 0.32). Steady-
state and transitional error rates were also significantly reduced
when using bilateral sensors for all modality groups and machine
learning algorithms with the exception of steady-state errors
with SVM and ANN for the fused sensor set (ALL) (Table 2).
There was generally no significant difference between unilateral
(ipsilateral versus contralateral) single modality sensor sets
for overall, steady-state, or transitional error rates; however,
contralateral sensors had significantly higher transitional error
rates with LDA and overall and transitional error rates with
ANN for the fused sensor set (Table 2). For unilateral sensor
sets, the error rate of IMU was lower than EMG or GONIO and
decreased with sensor fusion; the lowest average overall error
rate (1.43 ± 0.24%) was achieved by the LDA classifier using
all bilateral sensors. The random effect of subject was significant
(p < 10−10) and the overall error rate using all bilateral sensors

FIGURE 5 | Representative bilateral post-processed joint kinematic signals. Filtered joint position (and estimated velocities) recorded from knee and ankle

goniometers. Turquoise traces represent the right leg and purple traces represent the left leg. Circuits were recorded as two discontinuous trials

(LW→SA→LA→RD→LW and LW→RA→LW→SD→LW) but are represented as continuous.
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FIGURE 6 | Representative bilateral post-processed limb kinematic signals. Filtered limb kinematics recorded from shank and thigh IMU’s. Accelerometer (AX, AY, AZ,
units in g’s) and gyroscope (GX, GY, GZ, units in deg/s). Sagittal plane limb movement is represented in GY. Turquoise traces represent the right leg and purple traces

represent the left leg. Circuits were recorded as two discontinuous trials (LW→SA→LA→RD→LW and LW→RA→LW→SD→LW) but are represented as continuous.

Frontiers in Robotics and AI | www.frontiersin.org 9 June 2018 | Volume 5 | Article 78

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Hu et al. Bilateral Intent Recognition Improves Prediction

FIGURE 7 | Representative raster plot of bilateral features. The mean value of each channel (row) for each leg (right, R; left, L) was extracted from sliding windows

(length 300ms, increment 30ms) for one subject for a complete circuit consisting of level walking (LW), ramp ascent/descent (RA/RD), and stair ascent/descent

(SA/SD). Z-scores (represented by the color bar) were computed along each row. Distinct patterns could be visually identified for many additional features (not shown).

with LDA ranged from 0.52 to 2.78%. Interestingly, there was
no significant difference between overall error rates for either
GONIO(B) and ALL(I) (p = 0.08) or IMU(B) and ALL(I) sensor
sets (p = 0.26). For ALL(I), there was no significant difference
between classifiers; however for ALL(B), the overall error rate of
LDAwas significantly lower than ANN (p= 3.02× 10−5) but not
different from SVM (p= 0.11).

Contralateral Sensor Selection
The optimal collection of additional contralateral sensors after
each iteration varied between subjects but on average goniometer
and IMU sensors were preferentially selected before EMG sensors
(Figure 9, top). One contralateral lower leg kinematic sensor
(i.e., ankle goniometer or shank IMU) was selected within the
first two iterations for every subject; additionally, at least one
goniometer sensor (i.e., ankle or knee) was selected within the
first two iterations for all but two subjects. Overall (p = 1.27 ×

10−4), steady-state (p= 2.35× 10−3), and transitional (p= 2.54
× 10−3) error rates were significantly reduced from baseline
after only one additional contralateral sensor (Figure 9, bottom).
After four iterations, the error rate plateaued and even increased
slightly when approaching all bilateral sensors.

Preliminary Application to Controlling a
Powered Leg Prosthesis
Adding kinematic information from the non-prosthesis side
modularly and consistently reduced offline steady-state and

transitional error rates for both the baseline delayed/merged
classifier and the more generic classifier (dagger symbol)
(Table 3). Sensor fusion with non-prosthesis side sensors yielded
the greatest relative improvement for the heel contact level
walking and ramp/stair descent classifiers. For the more generic
classifier which used both additional IMU’s (Row 7), transitional
error rates were slightly better than baseline (Row 1) but
overall error rates were still higher because the toe off classifier
performed worse. By using prosthesis signals only for the toe
off classifier only (Row 8), the performance of the more generic
classifier improves and matches the baseline classifier (Row 1).

DISCUSSION

In this study, we simultaneously recorded bilateral lower-limb
neuromechanical (EMG, goniometer, IMU) signals from able-
bodied subjects as they spontaneously transitioned between
locomotor activities without wearing an assistive device.
We applied a previously implemented mode-specific intent
recognition framework (Young and Hargrove, 2016) to these
signals for offline classification. Our primary objective was to
determine the effect of including control information from
the contralateral limb on offline classification accuracy. We
found that using all bilateral signals achieved significantly lower
overall (1.43 ± 0.24%, 32% reduction), steady-state (0.76 ±

0.14%, 39% reduction) and transitional (4.50 ± 0.76%, 24%
reduction) error rates compared to all ipsilateral signals, which
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FIGURE 8 | Bilateral sensor fusion reduces intent recognition errors. (Top)

Overall error rates (mean ± SEM) for single modality sensor sets. (Bottom)

Overall error rates (mean ± SEM) for fused sensor set for linear discriminant

analysis (LDA), support vector machine (SVM), and artificial neural network

(ANN) classifiers. Data are averaged across 10 subjects and each set of bars

preserves the order of laterality (ipsilateral, left; contralateral, middle; bilateral,

right). Asterisks denote statistically significant differences.

were generally not different from contralateral signals. There was
a large inter-subject range for the lowest achievable error rates
but using bilateral information consistently and significantly
reduced offline error rates even for single modality sensor sets.
Sequential forward selection identified an optimal subset of
contralateral sensors that performed as well as, if not better
than all bilateral sensors. When compared to all ipsilateral
sensors as the baseline, adding only one contralateral sensor
(preferentially goniometer or IMU) significantly reduced overall,
steady-state, and transitional error rates. We also demonstrated
in a proof-of-concept offline analysis the potential for modularly
incorporating kinematic information from the non-prosthesis
side to improve an amputee’s control of a powered leg prosthesis
with intent recognition. Placing two additional IMU sensors on

the non-prosthesis side shank and thigh reduced overall, steady-
state, and transitional error rates for the state-of-the-art classifier
to 0.20% (62% reduction), 1.50% (60% reduction), and 0.35%
(61% reduction), respectively. With bilateral sensor fusion, a
more generic classifier (i.e., fewer control restrictions) can match
the state-of-the-art.

Related Work
Our protocol was nearly identical to Young et al. (2014a) and
Spanias et al. (2015) but involved able-bodied subjects, no
device, and wearable sensors. Using all ipsilateral sensors in
this setup, we achieved average transitional error rates (5.94 ±

0.84%) that were roughly half those reported by Spanias et al.
(2015) and Young et al. (2014a); steady-state error rates (1.25
± 0.19%) were comparable. As expected, error rates were higher
for transitions, which had fewer training examples and generally
more variability. Although we used a more generic mode-
specific classification scheme compared to Simon et al. (2017)
by neither merging level walking and ramp ascent classes nor
adding special classifier configurations (e.g., predict transitions
between stairs and level ground during mid-swing or mid-
stance), we achieved error rates approaching the state-of-the-art
for unilateral-informed intent recognition control of a powered
leg prosthesis. Because the addition of only one contralateral
sensor (preferentially kinematic) significantly reduced error
rates, our results suggest that substantial improvements in
controllability may be achievable with minimal instrumentation
of the contralateral limb. Unexpectedly, the error rate increased
slightly instead of plateauing after the addition of four
sensors. Although these consistent increases were not statistically
significant, they suggest that the extraneous sensors may not
only be redundant but also detrimental for intent recognition
because they contribute to model overfitting and/or introduce
undesirable sensor drift. From a practical standpoint, the total
time required for instrumenting the subject would also be
substantially reduced by using an optimized subset of sensors
instead of all sensors. Using delayed transitions (i.e., windows
starting 210ms before the gait event and ending 90ms after the
gait event) has significantly reduced intent recognition errors for
prosthesis control because delayed windows span both the onset
of and continuation of movement (Simon et al., 2017). However,
although offline error rates would likely have decreased further
we chose not to implement this delay for the sake of clarity and
generalizability to non-prosthesis applications for which such
delays may not be a desirable tradeoff for accuracy.

We showed that unilateral (ipsilateral or contralateral) sensor
sets performed comparably for single modalities, which had
previously never been demonstrated for intent recognition
control strategies. Thus, our results suggest that using signals
from the non-affected leg (which alternates between serving as
the leading and the trailing leg) for control and perhaps signals
from the affected side for gait segmentation could be suitable
for assisting individuals with severe unilateral impairment given
proper training on how to perform transitions. Therefore, we
believe high performance intent recognition control systems
could still be realizable for a range of assistive devices with
simple sensorization by integrating with wearable sensors and
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TABLE 2 | Complete offline classifier comparison.

Ipsi. (I) Contra. (C) Bilat. (B)

OVERALL (%)

EMG 8.66 [0.44] 8.83 [0.41] (0.51) 5.01 [0.29]* (2.57 × 10−7)

GONIO 7.13 [0.79] 7.69 [0.74] (0.35) 2.80 [0.41]* (2.89 × 10−6)

IMU 3.63 [0.35] 3.98 [0.31] (0.09) 2.26 [0.23]* (3.43 × 10−5)

ALL-LDA 2.09 [0.27] 2.48 [0.27] (7.19 × 10−3) 1.43 [0.24]* (2.91 × 10−6)

ALL-SVM 2.33 [0.30] 2.62 [0.32] (0.20) 1.64 [0.26]* (1.12 × 10−4)

ALL-ANN 3.07 [0.28] 3.77 [0.29]* (1.52 × 10−3) 2.63 [0.26] (6.26 × 10−3)

*α = 0.05/16 p-value p-value

STEADY-STATE (%)

EMG 6.61 [0.41] 6.76 [0.32] (0.55) 3.26 [0.22]* (1.89 × 10−6)

GONIO 6.59 [0.85] 7.16 [0.75] (0.38) 2.26 [0.38]* (1.21 × 10−5)

IMU 2.60 [0.31] 2.92 [0.28] (0.13) 1.33 [0.19]* (3.34 × 10−5)

ALL-LDA 1.25 [0.19] 1.38 [0.17] (0.24) 0.76 [0.14]* (6.27 × 10−5)

ALL-SVM 1.00 [0.17] 1.14 [0.16] (0.30) 0.71 [0.14] (8.95 × 10−3)

ALL-ANN 1.71 [0.16] 2.04 [0.21] (0.02) 1.55 [0.14] (0.15)

*α = 0.05/12 p-value p-value

TRANSITIONAL (%)

EMG 17.83 [0.78] 18.18 [1.22] (0.67) 12.91[0.85]* (3.02 × 10−7)

GONIO 9.51 [0.82] 10.06 [0.94] (0.46) 5.18 [0.63]* (2.79 × 10−6)

IMU 8.31 [0.74] 8.70 [0.64] (0.36) 6.40 [0.56]* (6.08 × 10−4)

ALL-LDA 5.94 [0.84] 7.42 [0.82]* (9.70 × 10−4) 4.50 [0.76]* (5.19 × 10−4)

ALL-SVM 8.37 [1.04] 9.30 [1.22] (0.19) 5.84 [0.89]* (6.18 × 10−5)

ALL-ANN 9.16 [0.93] 11.52 [0.97]* (6.94 × 10−4) 7.46 [1.00]* (3.91 × 10−3)

*α = 0.05/12 p-value p-value

Error rates (mean [SEM]) are shown for all evaluated classifiers. Asterisks under contralateral denote statistically significant differences between contralateral and ipsilateral sensor sets

(p-value). Asterisks under bilateral denote statistically significant differences between bilateral and ipsilateral sensor sets (p-value). The best-performing classifier for each type of error is

bolded.

modifying a generic intent recognition control architecture. Our
findings also showed that linear discriminant analysis (LDA) can
perform as well as, if not better than, more complex algorithms
such as support vector machines (SVM) and artificial neural
networks (ANN) on a feature set with higher dimensionality
(up to 22 sensors, 332 features) than we have previously used
in an intent recognition framework for lower-limb prosthesis
control (Spanias et al., 2015). To our knowledge, no other
studies have used simultaneously recorded bilateral lower-limb
neuromechanical signals from able-bodied individuals in an
intent recognition control framework; therefore, these results
for predicting locomotor activities for unimpaired individuals
freely walking without a device also help to establish classification
accuracy benchmarks for this framework.

Our offline study with an above-knee amputee subject also
lays a foundation for hybrid setups combining device-embedded
and wearable sensors by demonstrating the feasibility and success
of using bilateral sensor fusion for intent recognition control of
an assistive device for a clinical population. Although bilateral
sensor fusion achieved modest reductions in offline error rate
for the state-of-the-art classifier, the clinical significance of these
improvements remains unknown without an online analysis with

more subjects walking in settings more representative of home
use (longer sessions, more variability in terrain, no clinician to
check alignment or supervise, etc.). We also demonstrated that a
more generic classifier using bilateral sensor fusion could match
the state-of-the-art classifier, thus showing that bilateral sensor
fusion presents an alternative set of tradeoffs (instrumenting the
non-prosthesis side versus delayed transitions and no unique
assistance mode for ramp ascent) for reducing error rates
which may be preferable for some subjects. Aside from intent
recognition, other applications of neuromechanical sensor fusion
have included volitional control of ankle position for below-knee
amputees (Au et al., 2005, 2008; Kannape and Herr, 2014) and
stumble detection and classification (Zhang et al., 2011a). Beside
neuromechanical sensor fusion, vision-based environmental
sensing has also shown potential to improve control in an intent
recognition framework (Zhang et al., 2011b; Krausz et al., 2015).
Although we have focused on bilateral neuromechanical sensor
fusion for intent recognition, there are many other potential
applications of bilateral sensor fusion including measuring
balance, controlling stumble recovery mechanisms, modulating
a reference trajectory (e.g., estimating slope of an incline based
on the leading leg), and estimating walking speed. There is also
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FIGURE 9 | Sequential addition of contralateral sensors reduces error rates. (Top) The composition of the feature set was expressed as the average cumulative

proportion of the total features from each modality after each iteration (displayed from left to right, most to least beneficial). (Bottom) The overall error rate (mean ±

SEM) after each iteration. The steady-state and transitional error rates are shown after the addition of one and four contralateral sensor(s). Asterisk denotes a

statistically significant difference (p = 1.27 × 10−4). Data were averaged across 10 subjects.

TABLE 3 | Offline error rates using bilateral sensor information to control a powered leg prosthesis with an intent recognition framework.

Steady-state (%) Transitional (%) Overall (%)

1. Prosthesis only 0.53 3.75 0.90

2. Prosthesis, Contra Shank 0.36 3.00 0.67

3. Prosthesis, Contra Shank† 1.26 4.99 1.69

4. Prosthesis, Contra Thigh 0.30 2.50 0.55

5. Prosthesis, Contra Thigh† 1.42 3.99 1.72

6. Prosthesis, Contra Thigh/Shank 0.20 1.50 0.35

7. Prosthesis, Contra Thigh/Shank† 1.02 3.49 1.31

8. Prosthesis, Contra Thigh/Shank H 0.53 3.74 0.90

Total decisions 3,027 400 3,427

Error rates are shown for different mode-specific classifier configurations with varying amounts of kinematic information from the non-prosthesis side. The total number of classifier

decisions for each step type is also shown in the bottom row.
†
Control system neither merges LW and RA classes nor includes 90ms delay.

HControl system neither merges LW and RA classes nor includes 90ms delay; toe off classifier uses prosthesis signals only.

potential to use other modalities such as soft capacitive stretch
sensors and vision in bilateral intent recognition systems.

LIMITATIONS

The primary limitation of this study is that able-bodied subjects
walked without an assistive device. Our setup represents the

best case scenario of walking with a completely massless and
transparent device; however, we believe this scenario is still
valuable for establishing a device-agnostic upper bound for intent
recognition. After showing the feasibility of intent recognition
for a range spanning no gait impairment (able-bodied subjects
without a device) to full impairment (amputee with a prosthesis),
we believe that these strategies will reasonably generalize to
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individuals with an intermediate level of impairment who
need some assistance from a powered orthosis or exoskeleton.
The neuromechanical signals we collected came from wearable
sensors only but capture information that aligns closely with
control signals commonly accessible to wearable assistive devices.
For example, the C-Leg and C-Brace typically use joint and/or
limb kinematic information from sensors embedded in the device
for control (Ottobock, 2015, 2016); in addition to these sources of
information, the Vanderbilt leg has been controlled using signals
from joint torque, load cell, and EMG sensors (Varol et al., 2010).
Compared to sensors embedded in a device, wearable sensors are
more susceptible to drift because they are not rigidly attached
to the user; therefore, error rates are expected to decrease if the
corresponding signals came from embedded sensors.

To be consistent with previous studies, our data collection
used circuits consisting of level walking, ramps, and stairs
only. This protocol is efficient but leads to the known issue
of sparsity of transition examples, which were sometimes an
order of magnitude less than steady-state steps for a given mode;
however, we expect accuracy to increase with more data. Without
load cell information, we chose an IMU-based segmentation
approach which was not tuned for each subject’s self-selected
speed. Because the classifier relies on accurate and consistent
detection of gait events, we confirmed that the segmentation
algorithm’s detection of gait events produced results that would
have been similar to a thresholding approach based on axial load
and joint kinematics as previously implemented on a powered
knee-ankle prosthesis (Simon et al., 2014).

Another experimental limitation is that only relatively young,
able-bodied subjects without any gait impairments participated
in this study. We have included preliminary results from one
above-knee amputee walking on a powered leg prosthesis but
additional subjects (from different clinical populations and using
different devices) are needed to establish the generalizability of a
bilateral sensor fusion approach for intent recognition. Although
the within-subject variability of control signals from an impaired
population is expected to be higher, we still expect bilateral sensor
sets to outperform their unilateral counterparts for individuals
with unilateral impairment because the contralateral limb usually
remains functional and likely a beneficial source of control
information. Also, the results of evaluations done offline and
with able-bodied subjects have generally been consistent with
those from online testing (i.e., the user interacts with the device
to control every step and can respond to errors) with amputee
populations. Therefore, our promising results suggest that future

efforts should be directed toward online testing with unilaterally-
impaired individuals walking with an assistive device with some
sensorization of the non-affected side to determine whether
these significant improvements in offline accuracy translate to
meaningful clinical benefit.

CONCLUSION

We systematically demonstrated that using bilateral control
signals consistently and significantly enhances offline accuracy
for an intent recognition control system predicting locomotor
activities. In particular, only one additional contralateral
sensor was needed to provide significant benefit. Our work
also establishes a benchmark for using bilateral lower-
limb neuromechanical signals in a device-agnostic intent
recognition control framework. We also provided preliminary
evidence from an offline analysis with one above-knee
amputee subject walking with a powered leg prosthesis
to demonstrate the feasibility and benefit of integrating
wearable sensors on the non-affected side to improve
control using intent recognition. Together, these promising
results also suggest that the intent recognition framework is
compatible with a wide variety of sensor configurations and
has potential to improve the control of many types of assistive
devices.
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