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INtRoDUCtIoN

The field of assistive robotics has experienced rapid growth in the number of and capabilities of 
wearable lower limb assistive devices, which include robotic exoskeletons, orthoses, and prostheses. 
These devices have shown promising potential to restore motor function to individuals with gait 
impairments by providing locomotion assistance. Although many devices have already demon-
strated impressive performance in a variety of real-world conditions, comparing their performance 
objectively and improving their controllability remain challenging for several reasons. First, the 
outcome measures (e.g., joint kinematics, metabolic cost, clinical scores, and prediction accuracy) 
used by studies demonstrating improved walking ability with an assistive device are not consistent. 
Second, many studies only use treadmill walking or do not collect data from a variety of locomotor 
activities due to constraints in a device’s mechatronic design and/or control system. Third, many 
devices are in the process of commercialization, so testing data are seldom shared with the research 
community. In addition, many devices implement their own unique control frameworks that are 
not generic enough to conveniently implement on other hardware. Therefore, we expect improving 
access to device-agnostic neuromechanical signals during walking-related activities (from which 
researchers could develop and test novel control strategies before implementation on hardware) will 
be valuable to the field of wearable lower limb assistive devices.

Meanwhile, many benchmarks for the biomechanics of able-bodied human locomotion without 
an assistive device have already been established, some of which are publicly available. The gold 
standard for high-resolution biomechanical gait analysis is marker-based optical motion capture 
with ground reaction force measurement. Decades ago, seminal work from Winter (1983) used these 
techniques to introduce an inter-subject biomechanical analysis of level ground walking (LW) at 
different speeds. Their normative gait dataset includes electromyography (EMG) and joint kinematic 
and kinetic patterns and has since been expanded by other researchers to include more subjects 
and strides (e.g., Kadaba et al., 1990; Kirtley, 2014). The steady-state biomechanics of other com-
mon locomotor activities such as ascending and descending stairs and sloped surfaces of different 
geometries have also been reported in separate studies using similar techniques but these data are 
not as accessible to researchers (e.g., McFadyen and Winter, 1988; Riener et al., 2002; Lay et al., 2006, 
2007; Protopapadaki et al., 2007; Franz et al., 2012).

Human locomotion is most accurately quantified by joint kinematics, kinetics, and EMG using 
traditional laboratory-based instrumentation and techniques developed for biomechanical gait 
analysis. However, the exciting potential of wearable lower limb robotics lies in its promise to bring 
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these devices closer to everyday life, where alternative techniques 
are required to more ubiquitously measure neuromechanical 
signals during walking-related activities. Methods to more freely 
measure human movement have been developed in the field of 
human activity recognition (HAR), which aims to use continu-
ous streams of sensor data to recognize and monitor common 
activities of daily living such as sleeping, walking, exercising, 
and manipulating objects. As a result, HAR has produced an 
abundance of publicly available datasets. These repositories are 
valuable because they contain many different types of activity 
information from many subjects; however, they are not very 
suitable for more systematic characterization of normal loco-
motion. Sometimes, HAR datasets are collected from impaired 
populations or during more natural, but complex combined 
movements for which the ground truth activity is more ambigu-
ous. Some datasets are collected using minimal instrumentation 
(e.g., smartphone only), which is convenient but incomplete. 
By contrast, others rely on non-portable instrumentation (e.g., 
optical motion capture or video), which is highly accurate but not 
representative of biomechanical signals accessible for controlling 
a device in a more ecological setting. Also, many only contain 
single modalities (e.g., kinematics but no EMG) and/or use lower 
sampling rates that may be insufficient for certain online control 
schemes.

To the best of our knowledge, there still does not exist a pub-
licly available database of kinematic and EMG data simultane-
ously recorded from wearable sensors as able-bodied individuals 
freely transition between several distinct locomotor activities. To 
address some of these aforementioned limitations and provide 
relevant reference data for researchers in the field of wearable 
lower limb assistive devices, we introduce a device-agnostic 
benchmark dataset of bilateral neuromechanical signals called 
ENcyclopedia of Able-bodied Bilateral Lower Limb Locomotor 
Signals (ENABL3S). The dataset contains bilateral EMG and 
joint and limb kinematics recorded from wearable sensors for 
10 able-bodied individuals as they freely transitioned between 
sitting, standing, and several walking-related activities [level 
ground, stair ascent (SA)/stair descent (SD), and ramp ascent 
(RA)/ramp descent (RD)]. Although these data are not intended 
to replace existing benchmarks for biomechanical gait analysis, 
we believe they still fill a gap between those benchmarks and 
HAR datasets by providing richer neuromechanical data col-
lected from wearable sensors using a unified protocol for several 
distinct locomotor activities. In this data report, we summarize 
our methods for instrumenting subjects, collecting data, and 
post-processing for artifact removal and gait segmentation. We 
also present a summary of the types of locomotor activities and 
transitions captured by our protocol, validate our results, and 
conclude with suggestions for how other researchers in the field 
may benefit from this dataset.

MateRIaLS aND MetHoDS

Instrumentation Setup
Ten healthy able-bodied subjects (seven male, three female; 
25.5  ±  2  years; 174  ±  12  cm; 70  ±  14  kg) without any gait 

impairments were recruited and completed the following proto-
col between January and February 2017. Before walking, subjects 
were instrumented with wearable sensors to measure bilateral 
lower limb muscle activity and joint and limb kinematics. EMG 
signals were recorded using bipolar surface electrodes (DE2.1; 
Delsys, Boston, MA, USA) from the same seven muscles in each 
leg: tibialis anterior (TA), medial gastrocnemius (MG), soleus 
(SOL), vastus lateralis (VL), rectus femoris (RF), biceps femoris 
(BF), and semitendinosus (ST). These muscles were chosen because 
they are in part responsible for hip and knee flexion/extension 
and ankle plantarflexion/dorsiflexion, movements that are com-
monly assisted by wearable devices. They are also relatively easy 
to target when facing the subject from in front and behind. The 
muscle sites were prepared by removing excess hair, and the skin 
was cleaned by mildly scrubbing with an alcohol wipe. Sensors 
were attached to the skin with a double-sided adhesive. Electrode 
placement was guided by palpation according to the Surface 
ElectroMyoGraphy for the Non-Invasive Assessment of Muscles 
standards and verified by having subjects perform maximum vol-
untary contractions (MVC). Subjects performed three repetitions 
of ankle dorsiflexion/plantarflexion and knee flexion/extension 
for both legs. EMG signals were amplified by 1,000×, hardware 
band-pass filtered between 20 and 450 Hz (Bagnoli 16, Delsys), 
and sampled at 1 kHz.

Joint kinematic signals (sagittal plane only) were recorded 
using electrogoniometers (SG150; Biometrics Ltd., Newport, 
UK) placed on the knee and ankle and sampled at 500 Hz. At 
the beginning of trials, the goniometers were zeroed while the 
subject was in the upright standing position. 6-DOF (tri-axial 
accelerometer and gyroscope) inertial measurement units 
(IMUs) were placed bilaterally on the subjects’ thigh (below RF) 
and shank (adjacent to TA) and sampled at 500 Hz (MPU-9250; 
Invensense, San Jose, CA, USA). Goniometers and IMUs were 
secured to the subject using a combination of double-sided 
adhesive, elastic straps, and Coban self-adherent wrap. Another 
IMU was placed in a custom manufactured holster (tilted 20° 
from vertical) and worn around the waist with a belt. All signals 
were simultaneously recorded with a custom 16-bit data acqui-
sition device that permitted multi-rate sampling. To facilitate 
integration with our custom data acquisition software, all wear-
able sensors were used in a tethered setup; as a drawback, fully 
instrumenting each leg took up to an hour. The full instrumenta-
tion setup with IMU orientations is shown for a representative 
subject in Figure 1.

Data Collection protocol
In an experimental session, each subject was barefoot and 
completed approximately 25 repetitions of a circuit consisting of 
sitting (S), standing (St), LW, ascending/descending a ramp with 
a 10° slope (RA/RD), and ascending/descending a four-step stair-
case (SA/SD) step-over-step. These activities were chosen because 
they encompass the different types of terrain likely encountered 
in community ambulation and were completed as a circuit in a 
20 ft. × 30 ft. room for practicality and for increasing the number 
of repetitions. A platform (30″ tall) joined the staircase (7.75″ rise, 
10″ run) and ramp (14 ft. long) to allow all possible transitions 
between these activities. Data from each circuit were divided into 
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FIgURe 1 | Instrumentation setup showing bilateral sensor placement. The orientations of the shank, thigh, and waist inertial measurement units (IMUs) are shown 
with coordinate axes. The subject provided written informed consent for the publication of this image.
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two segments and recorded as separate trials. Odd-numbered 
trials consisted of S → St → LW → SA → LW → RD → LW → St → S. 
Even-numbered trials consisted of S → St → LW → RA → LW → 
SD → LW → St → S. The total distance walked for each continuous 
segment was approximately 45  ft. Trials during which sensors 
needed to be repositioned or the tether became tangled were 
excluded. Subjects were instructed to freely transition between 
locomotor activities at their self-selected speed, and breaks were 
routinely administered to avoid fatigue. The experimenter labeled 
the true locomotor intent of the subject using a key fob. Data col-
lection took up to 2 h.

post-processing
Heel contact and toe off gait events for each leg were reliably 
identified by finding peaks in the mean-subtracted and low-pass 
filtered (first-order Butterworth, 6  Hz) sagittal plane angular 
velocity (GY) of the shank segment using a threshold-based 
method similar to Maqbool et al. (2016). Briefly, the largest peaks 
in angular velocity were first used to identify mid-swing events. 
Toe off events were identified by searching for peaks before each 
mid-swing event. Heel contact events were identified by searching 
for peaks after each preceding mid-swing event. Event switches 
were initially placed beneath the heel and first metatarsal of each 
foot, but they triggered many false negatives and positives in our 
setup perhaps due to mechanical wear and/or foot placement 
on the staircase. Therefore, they were only used for validating 
the IMU-based segmentation technique. Gait events corrupted 
by motion artifacts (i.e., pauses and trips) were excluded. EMG 
signals were high-pass filtered (sixth-order Butterworth) at 
20 Hz, low-pass filtered (sixth-order Butterworth) at 350 Hz, and 
notch-filtered (sixth-order Butterworth, 6 Hz width) at 60, 180, 
and 300 Hz to attenuate motion artifact and ambient interference. 
Goniometer and IMU signals were low-pass filtered (sixth-order 
Butterworth) at 10 and 25 Hz, respectively. Joint velocities were 
indirectly computed by taking the central-difference numerical 
derivative of the joint position and added to the goniometer 
channels.

All signals were segmented into analysis windows beginning 
300 ms before each identified heel contact or toe off gait event. 
Four additional 300 ms analysis windows near each identified gait 
event (delayed by 30, 60, 90, and 120 ms relative to each event) were 
used. For each window, we extracted features previously used in 
intent recognition for control of a powered knee-ankle prosthesis. 
Features for goniometer and IMU channels included the mean, 
SD, maximum, minimum, initial, and final values (Varol et al., 
2010) (six features/channel). Features for EMG signals included 
the mean absolute value, waveform length, number of zero cross-
ings and slope sign changes, and the coefficients of a sixth-order 
autoregressive model (Huang et al., 2005; Hargrove et al., 2008) 
(10 features/channel). There were a total of 23 sensors (14 EMG, 
4 goniometer, 5 IMU), 52 channels (14 EMG, 8 goniometer, 30 
IMU), and 368 features (140 EMG, 48 goniometer, 180 IMU).

ReSULtS

The data are saved in CSV format in subject-specific folders and 
are available to download from Figshare at https://doi.org/10.

there is a metadata file, which catalogs the filenames, summary 
statistics (mean, SD, minimum, maximum) of each goniometer 
channel, and signal-to-noise ratios [ratio of maximum to baseline 
root-mean-square (RMS) voltage] of each EMG channel for each 
circuit. Subject-specific folders also include folders for the raw 
and processed data from individual circuits, a folder containing 
the processed EMG signals from all muscles during MVC trials, 
and a folder containing the features extracted from the five differ-
ent 300 ms analysis windows (beginning 300, 270, 240, 210, and 
180 ms before the gait events identified for each leg). Data from 
individual circuits also contain columns specifying the label of the 
true locomotor activity, the indices of heel contact and toe off gait 
events, and four-digit triggers denoting the outgoing and incom-
ing locomotor activities and gait phases. The first row of each file 
is a header specifying the column order. The post-processed data 
from all trials are included for completeness although some trials 

6084/m9.figshare.5362627. Within each subject-specific folder, 

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://doi.org/10.6084/m9.figshare.5362627
https://doi.org/10.6084/m9.figshare.5362627


taBLe 1 | Characteristics of ENcyclopedia of Able-bodied Bilateral Lower Limb 
Locomotor Signals.

transition  
to

Heel 
contact

toe off total

Level walking (LW) LW
RA
RD
SA
SD

4,523
240
240
239
248

4,637
245
246
253
243

9,160 (42.96%)
485 (2.27%)
486 (2.28%)
492 (2.31%)
491 (2.30%)

Ramp ascent (RA) RA
LW

1,408
243

1,416
252

2,824 (13.24%)
495 (2.32%)

Ramp descent (RD) RD
LW

1,757
239

1,762
245

3,519 (16.50%)
484 (2.27%)

Stair ascent (SA) SA
LW

489
238

472
245

961 (4.51%)
483 (2.27%)

Stair descent (SD) SD
LW

475
248

478
242

953 (4.47%)
490 (2.30%)

10,587 10,736 21,323 (100%)

The total number and proportion of gait events belonging to each type of locomotor 
activity are aggregated across all subjects.
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include disturbances (e.g., pauses, trips, and missed transitions), 
which are noted in the metadata file. However, only gait events 
from disturbance-free segments of trials are reported and used 
for feature extraction. Feature data also contain columns specify-
ing the corresponding leg-phase (1, right heel contact; 2, right toe 
off; 3, left heel contact; 4, left toe off) and the four-digit trigger. 
The first row of the feature data is a header specifying the column 
order. Ipsilateral refers to the side in which the gait event was 
detected (e.g., the right leg for right heel contact and right toe 
off events).

The overall composition of ENABL3S is shown in Table  1. 
For each subject, there were 530  ±  46 heel contact events and 
536 ± 45 toe off events for each leg (mean ± SD) after excluding 
transitions to or from standing. Additional subject information 
and an explanation of nomenclature and numbering are also 
included on Figshare.

DISCUSSIoN

ENcyclopedia of Able-bodied Bilateral Lower Limb Locomotor 
Signals represents a benchmark of bilateral lower limb neuro-
mechanical signals recorded from able-bodied individuals using 
wearable sensors during unassisted locomotion. The purpose of 
introducing this dataset is not to replace existing benchmarks 
for biomechanical gait analysis of steady-state locomotion but to 
provide a publicly available set of rich biomechanical data from 
wearable sensors, representing a compromise between traditional 
techniques and methods from HAR. ENABL3S includes data 
from several distinct walking-related activities (with transitions), 
which we expect to be helpful for understanding patterns in 
normal locomotion and developing novel control strategies for 
wearable lower limb assistive devices.

In order to assess the validity of this dataset, we chose to 
compare our recordings (averaged across legs and all subjects) 
to previously reported biomechanical measurements of level 

walking because these data are most accessible. Due to movement 
out of the sagittal plane and skin deformation/relative motion of 
the ankle goniometer, our measurements of ankle position were 
not considered biomechanically accurate signals. Nonetheless, 
these signals may still be useful for developing control strategies 
because many devices do not reproduce physiological motion 
and/or use embedded joint encoders to sense relative ankle posi-
tion. However, our measurements of knee position were more 
accurate when compared to previously reported data recorded 
using optical motion capture (Winter, 1983; McClelland et  al., 
2011). The RMS error between ENABL3S and Winter (1983) was 
5.9 and 9.5° for stance and swing phases, respectively. The R2 val-
ues were 0.73 and 0.94 for stance and swing phases, respectively. 
Our reported values for knee range of motion (ROM) during 
stance and swing phases (flexion at initial contact: 10.9 ± 5.6°; 
stance ROM: 6.8 ± 5.2 to 26.9 ± 5.7°; swing ROM: 3.4 ± 5.4 to 
58.0 ± 6.5°) were also comparable to reported values (McClelland 
et al., 2011). Errors in position can be attributed to a combina-
tion of differences in walking speed, minor misalignment of the 
sensor with the axis of rotation, and skin deformation/relative 
motion. The knee position could also be estimated (perhaps 
more accurately) by subtracting the orientations of the shank 
and thigh IMU sensors. The patterns of EMG activation for ankle 
plantarflexor/dorsiflexor and knee flexor/extensor muscles were 
also qualitatively similar to those previously reported for unas-
sisted overground walking at self-selected speed (Winter, 1983; 
Sylos-Labini et al., 2014). Knee position and EMG from TA, MG, 
BF, and VL aggregated across legs for all steady-state level walking 
steps for all subjects can be found in a supplementary document 
on Figshare. By confirming the accuracy of our measured kin-
ematic and EMG signals, we also validate the IMU-based method 
for gait segmentation.

Although these data are not as high resolution as optical 
motion capture, they strike a balance between resolution of sig-
nals, breadth of activities represented, feasibility for online control 
schemes, and contribution to existing publicly available datasets 
for human locomotion. These data can be used for developing 
novel control strategies such as intent recognition (i.e., predicting 
future states based on signals detected before movement comple-
tion) and more specifically investigating sensor fusion techniques 
and machine learning approaches for feature extraction and 
classification (e.g., deep learning). These data can also be inter-
preted as a simulation of able-bodied individuals walking with a 
completely massless and transparent (i.e., perfectly backdrivable) 
device and can be used to derive a device-agnostic upper bound 
on control strategies such as intent recognition. The raw data 
reported here may also be useful for comparing the performance 
of alternative control systems, assessing inter-subject variability, 
and comparing user-based biomechanical signals collected from 
an impaired population or a population walking with an assistive 
device (e.g., knee orthosis and ankle-foot prosthesis) to unas-
sisted normal locomotion.
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